Jun-Sheng Duan
发布时间: 2019-04-01 浏览次数: 364

Jun-Sheng Duan Professor
Shanghai Institute of Technology
School of Sciences
Telephone: (86-21-60873193)
Fax: (86-21-60873193)
E-mail: duanjs@sit.edu.cn  Homepage
http://blog.sciencenet.cn/u/duanjs

Education
Ph.D, Applied Mathematics, Shandong University, Jinan, China (1999,9--2002,6);
M. S., Applied Mathematics, Inner Mongolia University (1993,9--1996,6);
B. S., Mathematics, Inner Mongolia University (1982,9--1986,6). 
Working Experiences

05.2009--present: School of Science, Shanghai Institute of Technology.
08.2002--04.2009: School of Science, Tianjin University of Commerce.
07.1986--08.1999: School of Science,Inner Mongolia Polytechnic University.
Teaching

Mathematical analysis, Differential equation, Advanced algebra, Numerical analysis, etc.
Research Interests

Nonlinear Analysis, Fractional Calculus, Nonlinear Differential Equation, Fractional Differential Equation, Viscoelasticity TheoryDynamic System, Fuzzy Algebra, etc.
Research Projects

Leader: Multistage decomposition method for nonlinear fractional differential equations; The Innovation Program of Shanghai Municipal Education Commission (Major Project), 2014.1-2016,12.
Leader: Research on higher-order numerical solutions for nonlinear singular ODE of the Emden-Fowler type based on multistage decomposition; The Natural Science Foundation of Shanghai, 2014,7-2017,6.
Cooperator: The related problems on relativistic fluid dynamics Euler equations (No.11201308). The National Natural Science Foundation of China
2013,1-2015,12.
Cooperator: The exact number of solutions for some classes of boundary value problems for second ordered differential equations (11YZ225). The Innovation Program of Shanghai Municipal Education Commission, 2011,1-2012,12.
Papers 
Representative Papers
[45]Randolph Rach, Jun-Sheng Duan*, Abdul-Majid Wazwaz, On the Solution of Non-Isothermal Reaction-Diffusion Model Equations in a Spherical Catalyst by the Modified Adomian Method, Chemical Engineering Communications, Vol.202, Issue 8, 2015, 1081-1088. (*Corresponding author) DOI: 10.1080/00986445.2014.900054. Taylor Francis.
[44]Jun-Sheng Duan, Can Huang, Li-Li Liu, Response of a fractional nonlinear system to harmonic excitation by the averaging method, Open Physics, vol.13, No.1, 177-182, 2015. DOI: 10.1515/phys-2015-0020. De Gruyter.
[43]Jun-Sheng Duan, Randolph Rach, Abdul-Majid Wazwaz, Steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by the Adomian decomposition method, Journal of Mathematical Chemistry, Volume 53, Issue 4 (2015), 1054-1067. DOI: 10.1007/s10910-014-0469-z. Springer.
[42]Randolph Rach, Abdul-Majid Wazwaz, Jun-Sheng Duan*, The Volterra integral form of the Lane-Emden equation: New derivations and solution by the Adomian decomposition method, J. Appl. Math. Comput. Volume 47, Issue 1 (2015), 365-379. (*Corresponding author) Doi: 10.1007/s12190-014-0780-7; Springer.
[41]Jun-Sheng Duan, Randolph Rach, Abdul-Majid Wazwaz, A reliable algorithm for positive solutions of nonlinear boundary value problems by the multistage Adomian decomposition method, Open Engineering, Volume 5, Issue 1, 59-74, 2015. DOI: 10.1515/eng-2015-0007. De Gruyter.
[40]Lei Lu, Jun-Sheng Duan, Long-Zhen Fan, Solution of two-dimensional viscous flow in a rectangular domain by the modified decomposition method, CMES: Computer Modeling in Engineering & Sciences, Vol. 100, No. 6, pp. 463-475, 2014. doi:10.3970/cmes.2014.100.463. Tech Science.
[39]Yin-shan Yun, Temuer Chaolu, Jun-sheng Duan, A segmented and weighted Adomian decomposition algorithm for boundary value problem of nonlinear groundwater equation, Math. Meth. Appl. Sci. 2014, 37, 2406–2418. doi: 10.1002/mma.2986. Wiley.
[38]Lei Lu, Jun-Sheng Duan*, How to select the value of the convergence parameter in the Adomian decomposition method, CMES: Computer Modeling in Engineering & Sciences, Vol. 97, No. 1, pp. 35-52, 2014. (*Corresponding author) doi:10.3970/cmes.2014.097.035; Tech Science.
[37] Randolph Rach, Abdul-Majid Wazwaz, Jun-Sheng Duan*, A reliable analysis of oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics, International Journal of Biomathematics, Vol. 7, No. 2 (2014) 1450020 (12 pages). (*Corresponding author) DOI: 10.1142/S179352451450020X; World Scientific.
[36]Jun-Sheng Duan, Ai-Ping Guo, and Wen-Zai Yun, Similarity Solution for Fractional Diffusion Equation, Abstract and Applied Analysis, Volume 2014 (2014), Article ID 548126, 5 pages. doi:10.1155/2014/548126; Hindawi.
[35]Jun-Sheng Duan, Xiang Qiu, The periodic solution of Stokes' second problem for viscoelastic fluids as characterized by a fractional constitutive equation, Journal of Non-Newtonian Fluid Mechanics, 205 (2014) 11-15. Doi:10.1016/j.jnnfm.2014.01.001. Elsevier.
[34]Jun-Sheng Duan, Zhong Wang, Shou-Zhong Fu, The zeros of the solutions of the fractional oscillation equation, Fractional Calculus and Applied Analysis (Fract. Calc. Appl. Anal.), Vol. 17, No 1 (2014), pp. 10-22. DOI: 10.2478/s13540-014-0152-x. Springer.
[33]Jun-Sheng Duan, Shou-Zhong Fu, Zhong Wang, Fractional diffusion-wave equations on finite interval by Laplace transform, Integral Transforms and Special Functions, 2014, Vol.25, No. 3, 220-229. doi:10.1080/10652469.2013.838759. Taylor Francis.
[32]Abdul-Majid Wazwaz, Randolph Rach, Jun-Sheng Duan, A study on the systems of the Volterra integral forms of the Lane–Emden equations by the Adomian decomposition method, Math. Meth. Appl. Sci., 2014, Vol.37, Issue 1, 10-19. doi: 10.1002/mma.2776. Wiley.
[31]Randolph Rach, Jun-Sheng Duan, Abdul-Majid Wazwaz, Solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method, Journal of Mathematical Chemistry (J. Math. Chem.), 2014, Vol.52, Issue 1, 255-267. doi: 10.1007/s10910-013-0260-6, Springer.
[30]Abdul-Majid Wazwaz, Randolph Rach and Jun-Sheng Duan, The modified Adomian decomposition method and the noise terms phenomenon for solving nonlinear weakly-singular Volterra and Fredholm integral equations, Central European Journal of Engineering, Volume 3, Issue 4, 2013, Pages 669-678. DOI: 10.2478/s13531-013-0123-8. Springer.
[29]Shou-Zhong Fu, Zhong Wang and Jun-Sheng Duan, Solution of quadratic integral equations by the Adomian decomposition method, CMES: Computer Modeling in Engineering & Sciences, Vol. 92, No. 4, pp. 369-385, 2013. doi:10.3970/cmes.2013.092.369. Tech Science.
[28]Jun-Sheng Duan, Randolph Rach, A pull-in parameter analysis for the cantilever NEMS actuator model including surface energy, fringing field and Casimir effects, International Journal of Solids and Structures, 50 (2013) 3511-3518. doi: 10.1016/j.ijsolstr.2013.06.012. Elsevier.
[27]Jun-Sheng Duan, Zhong Wang, Shou-Zhong Fu, Fractional diffusion equation in half-space with Robin boundary condition, Central European Journal of Physics, 2013, Vol.11, Issue 6, 799-805. doi: 10.2478/s11534-013-0206-4. Springer.
[26]Jun-Sheng Duan, Randolph Rach, Abdul-Majid Wazwaz, Temuer Chaolu, Zhong Wang, A new modified Adomian decomposition method and its multistage form for solving nonlinear boundary value problems with Robin boundary conditions, Applied Mathematical Modelling 37 (2013), pp. 8687-8708. doi: 10.1016/j.apm.2013.02.002; Elsevier.
[25]Jun-Sheng Duan, Randolph Rach and Abdul-Majid Wazwaz, A new modified Adomian decomposition method for higher-order nonlinear dynamical systems, CMES: Computer Modeling in Engineering & Sciences, Vol. 94, No. 1, pp. 77-118, 2013. doi:10.3970/cmes.2013.094.077. Tech Science.
[24]Jun-Sheng Duan, The periodic solution of fractional oscillation equation with periodic input, Advances in Mathematical Physics, Volume 2013 (2013), Article ID 869484, 6 pages. doi: 10.1155/2013/869484. Hindawi.
[23]Jun-Sheng Duan, Temuer Chaolu, Randolph Rach, Lei Lu, The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations, Computers and Mathematics with Applications, 2013,Volume 66, Issue 5, Pages 728-736. doi:10.1016/j.camwa.2013.01.019; Elsevier.
[22]Jun-Sheng Duan, Zhong Wang, Shou-Zhong Fu, Temuer Chaolu, Parametrized temperature distribution and efficiency of convective straight fins with temperature-dependent thermal conductivity by a new modified decomposition method, International Journal of Heat and Mass Transfer, Vol. 59 (2013) 137-143. doi:10.1016/j.ijheatmasstransfer.2012.11.080; Elsevier.
[21]Jun-Sheng Duan, Randolph Rach, Shi-Ming Lin, Analytic approximation of the blow-up time for nonlinear differential equations by the ADM-Pade technique, Mathematical Methods in the Applied Sciences (Math. Meth. Appl. Sci.), 36 (13) (2013) 1790-1804. doi: 10.1002/mma.2725; Wiley.
[20]Jun-Sheng Duan, Zhong Wang, Yu-Lu Liu, Xiang Qiu, Eigenvalue problems for fractional ordinary differential equations, Chaos, Solitons & Fractals, Vol 46 (2013) 46-53. doi:10.1016/j.chaos.2012.11.004; Elsevier.
[19]Jun-Sheng Duan, Randolph Rach, Abdul-Majid Wazwaz, Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified Adomian decomposition method for nonlinear boundary value problems, International Journal of Non-Linear Mechanics, Vol. 49 (2013) 159-169. doi:10.1016/j.ijnonlinmec.2012.10.003. Elsevier.
[18]Xiang Qiu, Junsheng Duan, Jianping Luo, Purna N. Kaloni, Yulu Liu, Parameter effects on shear stress of Johnson–Segalman fluid in Poiseuille flow, International Journal of Non-Linear Mechanics, 55 (2013) 140-146. Doi: 10.1016/j.ijnonlinmec.2013.04.008. Elsevier.
[17]Randolph Rach, Abdul-Majid Wazwaz, Jun-Sheng Duan*, A reliable modification of the Adomian decomposition method for higher-order nonlinear differential equations, Kybernetes, Vol. 42, No. 2 (2013) 282-308. (*Corresponding author) Doi: 10.1108/03684921311310611. Emerald.
[16]Abdul-Majid Wazwaz, Randolph Rach, Jun-Sheng Duan, Adomian decomposition method for solving the Volterra integral form of the Lane-Emden equations with initial values and boundary conditions, Applied Mathematics and Computation, Vol. 219, Issue 10 (2013) 5004-5019. Doi: 10.1016/j.amc.2012.11.012. Elsevier.
[15]Jun-Sheng Duan, Temuer Chaolu, Randolph Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method, Applied Mathematics and Computation, Vol. 218, Issue 17 (2012) 8370-8392. doi: 10.1016/j.amc.2012.01.063. Elsevier.
[14]Jun-Sheng Duan, Randolph Rach, Higher-order numeric Wazwaz-El-Sayed modified Adomian decomposition algorithms, Computers & Mathematics with Applications, Vol. 63, Issue 11 (2012)  Pages 1557-1568. doi: 10.1016/j.camwa.2012.03.050. Elsevier.
[13]Jun-Sheng Duan, Randolph Rach, A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations, Applied Mathematics and Computation, Vol. 218, Issue 8 (2011) 4090-4118. doi: 10.1016/j.amc.2011.09.037. Elsevier.
[12]Jun-Sheng Duan, Randolph Rach, New higher-order numerical one-step methods based on the Adomian and the modified decomposition methods,  Applied Mathematics and Computation, Vol. 218, Issue 6 (2011) 2810-2828. doi: 10.1016/j.amc.2011.08.024. Elsevier.
[11]Jun-Sheng Duan, New ideas for decomposing nonlinearities in differential equations, Applied Mathematics and Computation, Vol. 218, Issue 5 (2011) 1774-1784. doi: 10.1016/j.amc.2011.06.061. Elsevier.
[10]Jun-Sheng Duan, New recurrence algorithms for the nonclassic Adomian polynomials, Computers & Mathematics with Applications, Vol. 62, Issue 8 (2011) 2961-2977. doi: 10.1016/j.camwa.2011.07.074. Elsevier.
[9]Jun-Sheng Duan, Ai-Ping Guo, Fen-Xia Zhao, Li Xu, Wen-Guang Tang, Standard bases of a vector space over a linearly ordered incline, Communications in Algebra, Vol. 39, No. 4 (2011) 1404-1412. doi: 10.1080/00927871003738915. Taylor Francis.
[8]Jun-Sheng Duan, Convenient analytic recurrence algorithms for the Adomian polynomials, Applied Mathematics and Computation, Vol. 217, Issue 13 (2011) 6337-6348. doi: 10.1016/j.amc.2011.01.007. Elsevier.
[7]Randolph Rach, Jun-Sheng Duan*, Near-field and far-field approximations by the Adomian and asymptotic decomposition methods, Applied Mathematics and Computation, Vol. 217, Issue 12 (2011) 5910-5922.
*Corresponding authordoi: 10.1016/j.amc.2010.12.093. Elsevier.
[6]Jun-Sheng Duan, An efficient algorithm for the multivariable Adomian polynomials,  Applied Mathematics and Computation, Vol. 217, Issue 6 (2010) 2456-2467. doi: 10.1016/j.amc.2010.07.046. Elsevier.
[5]Jun-Sheng Duan, Recurrence triangle for Adomian polynomials, Applied Mathematics and Computation, Vol. 216, Issue 4 (2010) 1235-1241. doi: 10.1016/j.amc.2010.02.015. Elsevier.
[4]Jun-Sheng Duan, Ai-Ping Guo, Reduced polynomials and their generation in Adomian decomposition methods, CMES-Comput. Model. Eng. Sci., Vol. 60, No. 2 (2010) 139-150. doi:10.3970/cmes.2010.060.139.Tech Science.
[3]Jun-Sheng Duan, Time- and space-fractional partial differential equations, Journal of Mathematical Physics, 2005, Vol. 46, No. 1: 13504-13511. doi: 10.1063/1.1819524. AIP.
[2]Jun-Sheng Duan, The transitive closure, convergence of powers and adjoint of generalized fuzzy matrices, Fuzzy Sets and Systems, 2004, Vol. 145, No. 2: 301-311. doi:10.1016/S0165-0114(03)00165-9. Elsevier.
[1]DUAN Jun-sheng, XU Ming-yu, Concentration distribution of fractional anomalous diffusion caused by an instantaneous point source, Applied Mathematics and Mechanics, 2003, Vol. 24, No. 11: 1302-1308. doi: 10.1007/BF02439653. Springer.